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1 Overview

Pattern recognition is one of the most fundamental and important types of information pro-
cessing. The Bayes error is the error rate achieved by the optimal classifier for a given pattern
recognition problem. Therefore the Bayes error represents the best achievable performance
for any classifier. The Bayes error is rarely known in practice because designing a classifier
which achieves the Bayes error requires exact knowledge of the probability distributions from
which the data are drawn. This makes it difficult for the practitioner to determine how close
a classifier is to optimal, and consequently to decide how much effort should be devoted to
classifier improvement. In addition, when classifier performance fails to achieve pre-specified
requirements it is difficult to determine whether this is due to lack of optimality in the classifier
or lack of information in the data. Perhaps surprisingly, the Bayes error can be estimated from
a given data set without designing a classifier that achieves this error. The estimation technique
consists of choosing a family of classifiers for which the difference between their classification
error and the Bayes error can be analytically approximated. Then, by fitting the actual (data
dependent) classification error for a series of classifiers from this family to this bias expression
it is possible to compute an estimate of the Bayes error. This approach was originally proposed
by Fukunaga [Fuk90], and has been used to produce Bayes error estimates for some simple real
world problems. We propose to develop robust and efficient algorithms for estimating the Bayes
error from empirical data.

2 Technical Background

Consider a two-class pattern recognition problem where the goal is to correctly assign patterns
(e.g., “measurements of a system”) to one of the two classes. In most practical problems it is
impossible to do this without making errors. This can be illustrated with the measurements
height and weight and the classes male and female. While it is generally true that men are
heavier and taller than women, they cannot be perfectly classified on this basis alone. For
example, consider only the measurement height. Clearly there is an overlap in the distribution
of heights for men and women. A similar situation exists with respect to weight. Combining
height and weight may help reduce overlap but will not eliminate it. The extent of overlap limits
the degree to which men and women can be separated on the basis of these measurements. The
Bayes classification error is a measure of ambiguity due to the overlap between measurement
distributions. Since this ambiguity is irreducible for a given problem, the Bayes error is the
smallest classification error achievable by any classifier.

More formally, following [DHT73], let the number of measurements made at any one time
be d, and let = [z z2 --- xq], be a set of measurements belonging to some class. Each
measurement vector x is called a sample, and a collection of samples is called a sample set. For
simplicity consider a two-class problem where wy and w; are the class labels. Let P(w; | @)



denote the probability that & belongs to class w;. Assume we have a classifier that assigns a
label for each . An error is made or the sample @ is misclassified, if & is assigned to the class
w; when it is actually a member of some other class w;. The average classification error € is

€= /anl P(wo | ) d + /ano P(wi | ) de. (1)

In this equation the first term is the probability of assigning @ the label w; when its true label
is wp and the second term is the probability of assigning @ the label wy when its true label is wy.
It is easy to show that the classification rule that minimizes € is to assign « to the class w; with
the highest probability P(w; | ). The corresponding value of € is called the Bayes error and
denoted €*. These ideas are illustrated in Figure 1 for a 2-class problem with 1 measurement.

The two regions £ — wp and & — w; show the range of sample values & which are assigned to
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Figure 1: The decision regions of a Bayes classifier for a problem in which m =2 and d = 1.

class wy and w; respectively. In the region @ — wy, the value of P(wy | @) is always greater
than P(w; | ) and conversely in & — w;. The area of the shaded region is the classification
error €*. The dotted vertical line in the figure is at the point where P(wg | ) = P(w; | ) and
represents the dividing line between the two regions.

In practice the the posterior probabilities P(w; | ) are not known and so the goal is to
determine a decision rule that best approximates the optimal one. This can be accomplished
with a discriminant function h(x) and a classification threshold T that assigns & to class wy
when A(z) > 7 and to class wy when h(x) < 7. Using Bayes rule to rewrite the conditional
probabilities P(w; | ), the discriminant function and classification threshold for a 2-class
problem take the form
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where p(-) and 75() are estimates of the conditional densities and prior probabilities respectively.

For estimating the Bayes the error the family of k-nearest neighbor (kNN) classifiers was
chosen because its classification error approaches the Bayes error asymptotically and its bias
from the Bayes error can be analytically approximated. Given a finite set of labeled samples,
8§ = {(zi,wi)}, a volumetric k-nearest neighbor classifier is obtained by substituting a Oth order
discrete local approximation for the conditional densities p(x | w;). More specifically the density



estimate at x is the fraction of samples in a local region surrounding & divided by the volume
of the local region, where the size of the local region is determined by the distance to the kth
nearest neighbor from class w;, in other words
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In this equation n; is the number of samples from class w; and v}’ (:c) is the volume of the
local region surrounding . The use of £ — 1 rather than k£ in the numerator ensures that
the density estimate is asymptotically unbiased. The nature of this density estimate around a

single point @(j) is shown in Figure 2. Intuitively, at every sample the kNN density estimate
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Figure 2: The kNN density estimate p(z(j) | w;) for the sample point #(j). The shaded region
is the volume of the hyper-ellipsoid bounded by the kth closest point from class w;.
The height of this window is the density estimate.

places a window of constant height which has a hyper-ellipsoidal footprint. The height of the
window is computed from Equation (3). The size of the hyper-ellipsoid varies with the sample
point being considered, and is determined by the distance from the sample point to the kth
closest point from class w;, where this point is is denoted by @;". The form of the distance
measure determines the specific shape of the hyper-ellipsoid. Substituting Equation (3) in to
Equation (2) for the 2-class problem and simplifying yields the kNN discriminant function
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In this equation D;(z,Z}') = (x — :ﬁ‘g’)Tﬁ}‘;l(m — &%) is the Mahalanobis distance between
the sample point & and its kth nearest neighbor from class w;, and 3, is the estimate of the
covariance matrix associated with the samples from class w;. In a kNN classifier the sample
point x is assigned to class wy if the scaled distance to the kth point from class wyq is less than
the scaled distance to the kth point from class w;; otherwise it is assigned to class w;. The
ENN discriminant function hiny(x) is piecewise linear if f]g =3, and piecewise quadratic
otherwise, hence hinn(x) is continuous. For a problem with two measurements per sample,
the decision boundary hiyn(z) = minn for a INN classifier is shown in Figure 3.

The statistical properties of kNN classifiers are well known and are discussed in [DGL96]
and [Fuk90]. The kNN classifier is consistent in that its classification error approaches the
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Figure 3: The decision boundary for a 1NN classifier for a problem with two measurements per
sample where 3y = 3.

Bayes error asymptotically as both & — oo and n — oo. However, for finite £ and n, its
classification error is biased away from the Bayes error. Fukunaga [Fuk90] has shown that
this bias can be reduced by replacing 7, yny with a threshold 7 that is chosen to minimize the
classification error over the samples in 8. An approximation for the bias of the kNN classifier
that is accurate to second order is
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where AT = 7 —1,yny and 1 = ng+n;. Note that exyy = €* as k — oo, 1 — oo, and 7 — TiNN.
Also note that Funkunaga’s work shows, perhaps surprisingly, that for finite £ and n choosing
7 = 1NN does not lead to the best estimates of €*. The bias approximation in Equation (5)
is a function of only two independent variables; the neighborhood size k, and the threshold 7.
In addition it is linear in seven undetermined coefficients; ¢y, c1, c2, ¢3, ¢4, ¢5 and the Bayes
error €. This suggests the following technique for estimating the Bayes error. Compute exnn
for k = 1,2,...k and then fit a curve to the resulting set of {(k, exnn(k))} pairs to obtain the
coefficients of Equation (5). This curve fit is illustrated in Figure 4. The zero order coefficient
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Figure 4: Curve fitting the bias of the volumetric kNN classifier.

from this fit is an estimate of the Bayes error! Notice that this remarkably simple technique
can be used to obtain accurate estimates of the Bayes error without building a classifier which
achieves this error.



We summarize by placing this idea in a historical context. Most of the work on Bayes
error estimation has focused on estimating bounds for the Bayes error from data. It is shown
in [DGLY6] that even theoretically these bounds are not tight. Furthermore, it is shown in
[FH87b] that in practice the estimates of these bounds often have large biases. Fukunaga has
worked extensively on methods for tightening these bounds by reducing this bias [FH73, FF84,
FF85, FH87b, FH87a, FH89, Fuk90]. In his later work Fukunaga [FH87a, Fuk90] introduced
the idea of estimating the Bayes error directly by curve fitting a bias approximation (i.e.,
Equation (5)), but his techniques are limited to two-class problems where the class distributions
p(x | w;) are unimodal. In addition, Fukunaga’s work overlooks some important theoretical and
practical issues that must be overcome to make this technique practically viable. We propose
to address these open issues and extend this technique to multi-class problems with multimodal
distributions.

3 Proposed Work and Significance to LANL

We propose to develop robust algorithms for estimating the Bayes error from large data sets.
This requires fleshing out Fukunaga’s proposed methodology in the following ways.

1. Parameter Estimation: Fukunaga develops several criteria for choosing 7 which we
have explored in our previous work [HH99]. We will theoretically assess the advantages
and disadvantages of these criteria, as well as investigating other possible criteria. We
will then explore computationally efficient implementations of the various criteria. This
will require the development of new algorithms that significantly extend Fukunaga’s work.
This issue must be addressed because good estimates of 7 are essential to obtaining good
estimates of the Bayes error.

2. Nearest Neighbor Computation: The computational complexity of this approach
is dominated by the the nearest neighbor computation. A brute force implementation
is computationally expensive and will prohibit this method from scaling to large data
sets. We will investigate data structures (e.g., k-d trees) and algorithms for efficiently
computing the nearest neighbors. In addition, we will explore recent methods, such as
those in [IM98], for approximating nearest neighbor computations that promise to scale
to extremely large problem sizes. Resolving these computational issues is critical in order
to scale the Bayes error estimation procedure to data sets with a large number of samples
and/or a large number of measurements per sample.

We also propose to extend Fukunaga’s method in the following ways.

1. Multiple Modes per Class: Fukunaga’s technique assumes that the conditional proba-
bility densities p(x | w;) are unimodal. We will to extend this formalism to the case where
p(x | wi) are multimodal. This will require the use of a mixture model for p(x | w;) and
the incorporation of a maximum likelihood estimator for the parameters of this model,
such as the EM algorithm and its recent extensions discussed by [McL92].

2. Multiple Classes: Fukunaga’s procedure is designed for two-class problems. We will
extend the method to cases where there are more than two classes. This will require
the derivation of a new bias expression, since Equation (5) is valid only for the 2-class
problem. Beyond this we believe that many of the lessons learned from implementing
multiple modes per class can be leveraged to address problems with multiple classes.



Bayes error estimation can be applied to classification problems at LANL in areas such as
computer security and weapons non-proliferation. Examples of computer security problems
include document classification and network intrusion detection. Examples of problems in
weapons non-proliferation include the detection of weapons tests and weapons factories. All of
these problems are classification problems in the sense that the goal is to distinguish between
a class of things that are defined to be “normal” and a class of things that are “abnormal”.
An important question in all of these problems is how well the classes can be distinguished
using the currently measured quantities. An estimate of the Bayes error answers precisely this
question. Another important issue in these problems is the determination of the optimal feature
set. Features can be thought of as transformations of the data that filter out noise and retain
the information essential for discrimination. In order to select features one must have some
criteria that allows different features to be compared. The Bayes error estimate is one good
candidate for such a criteria. To compare two features, transform the original sample data
using each feature. Estimate the Bayes error for each of these two transformed sample sets.
The better feature under this criteria is the one with the lower Bayes error estimate.
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